CIRRUS SR-20

- 1. Total usable fuel capacity for the SR-20 is:
 - a. 60.5 gallons
 - b. 56 gallons
 - c. 54 gallons
 - d. 50 gallons
- 2. Total fuel capacity for the SR-20 is:
 - a. 60.5 gallons
 - b. 56 gallons
 - c. 54 gallons
 - d. 50 gallons
- 3. Landing approach speeds are _____KIAS with Flaps 0%, _____KIAS with Flaps 50%, and _____KIAS with Flaps 100%.
- 4. Fuel for start, taxi, and runup is _____ gallon(s)
- 5. Maximum weight allowed in the baggage area is:
 - a. 100 pounds
 - b. 120 pounds
 - c. 130 pounds
 - d. None of the above
- 6. The Maximum Recommended Turbulent Air Penetration or Maneuvering speeds (KIAS) are:
 - 3000 pounds _____
 - 2600 pounds _____
 - 2300 pounds _____
- 7. Enter the following speeds (KIAS, sea level):

Vx_____ VNO_____

Vy_____ VNE_____

VFE _____@50% _____@100% VGLIDE _____@3000 lbs ______@2500 lbs

- The Cirrus Airframe Parachute System (CAPS) recommended deployment airspeed is ______, and the maximum demonstrated deployment speed is ______ KIAS.
- 9. If the RPM does not respond to power lever movement, the most likely cause is:
 - a. A faulty propeller governor
 - b. An oil system malfunction
 - c. Both (a) and (b)
 - d. Power lever linkage failure
- 10. If low oil pressure is accompanied by a rise in oil temperature, there is a good reason to suspect:
 - a. The oil pressure gauge is inoperative
 - b. The outside air temperature is too high for the power setting
 - c. An engine failure may be imminent
 - d. The mixture is too lean
- 11. The flap setting for normal takeoff is:
 - a. 10 deg
 - b. Zero deg
 - c. 50%
 - d. None of the above
- 12. The maximum demonstrated crosswind velocity is _____ knots.
- 13. Normal takeoff rotation speed is _____ KIAS?
- 14. During the run-up magneto check, the RPM drop should not exceed ______ RPM on either magneto or greater than _____ RPM difference between magnetos.
- 15. Fuel BOOST should be left ON during takeoff and for climb as required for vapor suppression with hot or warm fuel.
 - a. True
 - b. False

16. Flap retraction speed on takeoff is _____ KIAS.

- 17. The engine is equipped with an altitude compensating fuel pump that automatically provides the proper full rich mixture. Because of this, the mixture should be set to full rich to allow the aneroid to provide auto leaning for the engine during all flight conditions.
 - a. True
 - b. False
- 18. If additional cruise leaning beyond that provided by the aneroid is desired, Best Power can be obtained using 75% power or less at _____ deg F Rich of Peak EGT, and Best Economy can be obtained using 65% power or less at _____ deg F Lean of Peak EGT.
- 19. The maximum glide ratio is ______, which equates to approximately:
 - a. 1.5 nm per 1000 feet
 - b. 15 nm per 10,000 feet
 - c. 1.8 nm per 1000 feet
 - d. Both (a) and (b)
- 20. Using the wind component chart calculate the wind components for the following conditions:

Runway 02 reported wind 060 degrees at 30 knots

- a. 23 knots headwind, 19 knots crosswind
- b. 19 knots headwind, 23 knots crosswind
- c. 23 knots tailwind, 19 knots crosswind
- d. Crosswind is above the maximum demonstrated crosswind
- e. Both (b) and (c)

- 21. Calculate the following takeoff ground roll: Pressure altitude: 1000 feet Temp: 30 deg C Flaps: 50% Weight: 3000 pounds Wind: 160 degrees at 12 knots Runway: 20
 - a. 1766
 - b. 1901
 - c. 1631
 - d. 2306
- 22. Calculate the following cruise performance:

Weight: 2600 pounds Pressure altitude: 6000 feet Temp: 18 deg C @ 6000 feet (ISA+15) RPM: 2500 PWR: 65%

a. 21.8 MAP, 144 KTAS, 10.6 GPH
b. 21.8 MAP, 142 KTAS, 10.4 GPH
c. 22.2 MAP, 144 KTAS, 10.6 GPH

- d. 21.5 MAP, 143 KTAS, 10.5 GPH
- 23. Calculate the short field landing ground roll and distance over a 50 feet obstacle:

Pressure altitude: Sea Level Temperature: 30 degrees C Weight: 2900 pounds Wind: 020 degrees at 10 knots Runway: 20

- a. 1067 and 2109 feet
- b. 1067 and 3164 feet
- c. 1601 and 3164 feet
- d. 985 and 1947 feet
- 24. The maximum landing weight is ______ pounds. If you takeoff at maximum takeoff weight of ______ pounds, you must burn ______ gallons of fuel before your can land.

25. CAPS deployment has been demonstrated from straight and level flight as low as ______feet AGL. From entry into a one-turn spin until under a stabilized parachute is _______feet. It is recommended to make your decision to activate CAPS above _______feet. After CAPS deployment the aircraft will descend at less than ______feet per minute with a lateral speed equal to the velocity of the surface wind. The CAPS landing touchdown is equivalent to a ground impact from a height of approximately ______ feet.