EGLIN AERO CLUB C-172 OPEN BOOK EXAMINATION

Apr 2016

(The following questions are taken from the C-172N POH)

1.	Total usable fuel capacity for the aircraft with long range tanks is:			
	a. 54 gallons			
	b. 50 gallons			
	c. 62 gallons			
	d. 40 gallons			
2.	Total fuel capacity for aircraft with long range tanks is:			
	a. 54 gallons			
	b. 43 gallons			
	c. 21.5 gallons			
	d. 50 gallons			
3.	The maximum certified weight for the C-172N model in the normal category is pounds.			
4.	The maximum combined weight capacity for baggage areas 1 and 2 is:			
	a. 100 pounds			
	b. 120 pounds			
	c. 170 pounds			
	d. None of the above			
Ma	aneuvering speeds for the C-172N in KIAS are:			
	2300 pounds			
	1950 pounds			
	1600 pounds			
6.]	List the following speeds for the C-172N (KIAS-sea level):			
	V_X V_{NO}			
	$ m V_{ m Y}$ $ m V_{ m NE}$			
	V_{FE} (flaps up)			

EGLIN AERO CLUB C-172 OPEN BOOK EXAMINATION

Apr 2016

7.	A gradual loss of RPM and eventual engine roughness may result from:			
		Formation of carburetor ice Loss of oil pressure		
		Low fuel		
	d.	Magneto problems		
8.	If total to susp	loss of oil pressure is accompanied by a rise in oil temperature, there is a good reason pect:		
	a.	The oil pressure gauge is inoperative		
		The outside air temperature is too high for the power setting		
		An engine failure is imminent		
		The mixture is too lean		
9.	The av	vionics power switch must be during engine start to		
	a.	ON, ensure proper operation of gauges		
		ON, ensure the magnetos are operating		
		OFF, prevent electrical fire in the engine compartment		
		OFF, prevent possible damage to avionics		
10		g the run-up magneto check, the RPM drop should not exceed RPM on either to or greater than RPM difference between magnetos.		
	a	100, 50		
		125, 50		
		175, 50		
		50, 25		
11.		10° wing flaps for takeoff in a C-172N reduces the ground roll and total distance over tacle by approximately percent.		
	a.	25		
		50		
	c.	5		
	d.	10		

- 12. When landing in a strong crosswind, use the following procedure for selecting the approach flap setting:
 - a. Always use 40 degree flaps
 - b. Always use 0 degree flaps
 - c. Use the minimum flap setting required for the field length
 - d. Use 10 degree flaps
- 13. The maximum demonstrated crosswind velocity for the C-172N is _____ knots.
 - a. 25
 - b. 10
 - c. 15
 - d. 12
- 14. During a balked landing (go around), reduce the flap setting to _____ degrees immediately after full power is applied.
 - a. 0
 - b. 10
 - c. 20
 - d. 30
- 15. Using the wind component chart, calculate the wind components for the following conditions:

Runway 19; reported wind 240° at 13 knots

- a. 13K headwind, 17K crosswind
- b. 8K headwind, 10K crosswind
- c. 8K tailwind, 10K crosswind
- d. 10K headwind, 9K crosswind
- 16. Calculate the following short field takeoff ground roll using C-172N data:

Pressure altitude: 1000 feet

Temp: 40 degrees C

Flaps: Up

Weight: 2300 pounds

Wind: 150 degrees at 12 knots

Runway: 19

- a. 702
- b. 945
- c. 864
- d. 850

17. Calculate the following cruise performance using the C-172N data:

Weight: 2300 pounds Pressure altitude: 6000 feet

Temperature: 20 degrees above standard

BHP: 64%

- a. 2500 RPM, 114 KTAS, 7.1 GPH
 b. 2450 RPM, 110 KTAS, 7.4 GPH
 c. 2400 RPM, 108 KTAS, 7.4 GPH
 d. 2400 RPM, 109 KTAS, 7.3 GPH
- 18. Calculate the following short field landing ground roll and over 50 foot obstacle distance using C-172N data:

Pressure altitude: Sea Level Temperature: 30 degrees C

Flaps: 40 degrees Weight: 2300 pounds

Wind: 010 degrees at 10 knots

Runway: 19

- a. 570 and 1325 feetb. 627 and 1457 feetc. 513 and 1193 feetd. 818 and 1943 feet
- 19. Calculate the following C-172N weight and balance problem:

	Weight	Moment/1000
Basic Empty Weight	1479.8	58.58
Long range tanks full		
Pilot and Front Passenger	340	
Rear Passenger	150	
Baggage Area 1	30	
Baggage Area 2	0	
Ramp Weight & Moment		
Start/Taxi/Run-up (2 gallons)		
Takeoff Weight/Moment		

- a. Center of gravity TOO FAR AFT; weight within limits
- b. Aircraft within weight/CG limits in UTILITY category
- c. Aircraft is OVERWEIGHT; CG is within limits
- d. Weight and CG IN LIMITS, NORMAL category

EGLIN AERO CLUB C-172 OPEN BOOK EXAMINATION Apr 2016

(Questions 20 thru 25 are taken from T-41A data)
20. The maximum certificated takeoff weight for the T-41A is pounds.
21. The flap extension speed (V_{FE}) for the T-41A is MPH.
22. Total usable fuel for the T-41A is gallons (standard tanks):
a. 40b. 36c. 39d. 53
23. The T-41A oil capacity is quarts and the engine should not be operated with less than quarts.
 a. 7/5 b. 8/5 c. 8/6 d. 6/4
24. The correct fuel management procedure for a VFR flight with a climb to cruising altitude of 5500 feet in the T-41A is:
 a. Fuel selector on BOTH at all times b. Fuel selector on BOTH for takeoff and climb c. Fuel selector set to LEFT or RIGHT during cruise d. Both b and c above are correct
25. List the following speeds for the T-41 A (MPH-sea level)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$